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Q-Factor Measurement with Network
Analyzer

DARKO KAJFEZ, SENIOR MEMBER, IEEE, AND EUGENE J. HWAN, MEMBER IEEE

Abstract — Glnzton’s impedance method of Q-factor measurement is

adapted to network analyzer techniques. The circuit model of the resonator

incorporates also an external reactance which vanes finearly with frequency

to take into account the effects of the coripling mechanism and the

influence of the distant resonant modes.

I. INTRODUCTION

T HE RESONANT microwave circuits, such as micro-

strip transmission lines or dielectric resonators, ex-

hibit sharp resonances at distinct frequencies. In the vicin-

ity of each resonance, the behavior of the resonator may be

described by an equivalent lumped resonant circuit. The

three basic parameters of the equivalent resonant ciTcuit

are: the unloaded resonant frequency ~0, the unloaded Q

factor QO, and the coupling factor K.

The input impedance as a function of frequency of a

typical resonator describes a nearly perfect circle. Ginzton
[1] describes in detail the analysis of measured circles on

the Smith chart in order to deduce the values of QO and K.

The procedure described by Ginzton was developed at the

time when impedances were measured with the use of

slotted lines. It was then appropriate to define the “de-

tuned short” and “detuned open” reference points on the

slotted line, and to interpret the data with respect to one or

the other of these two points. The implied assumption was

that the reactance X, of the external circuit can be ne-

glected.

Nowadays, the impedance is measured much faster with

the network analyzer [2]. The reference plane of such a

measurement coincides with the end of transmission line

leading to the resonator, while the “detuned short” or

“detuned open” points are difficult to locate and of no

advantage in interpreting the data. The procedure to be

described here uses the data directly, such as shown on the

polar display of the network analyzer. Furthermore, the

analysis which follows does not require that the reactance

of the external circuit be negligible.
In the measurement method to be described, the resona-

tor is located at the end of the transmission line which

leads to the network analyzer, A recent paper [3] has
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described an alternative method in which the resonator is

coupled to the doubly-terminated transmission line like a

bandstop filter. Each of these methods should find its use

in different circuit configurations.

II. CIRCUIT MODEL

The equivalent circuit for the input impedance Z, of an

inductance-coupled cavity is shown in Fig. l(a). The circuit

is of the Foster type, consisting of an infinite number of

parallel resonant circuits, one for each resonant mode in

the cavity [4]. If the cavity was capacitance-coupled, the

inductance L. would have to be replaced by a capacitance.

The transmission line of the characteristic impedance RC (a

real number) to the left of the input terminals represents

the cable leading to the network analyzer.

The measurement is performed in the narrow range of

frequencies around the value OJO,the resonant frequency

under observation. In this narrow range of frequencies, the

remainder of the circuit in Fig. l(a) is replaced by an

equivalent “external” impedance R, + jXc as shown in

Fig. l(b). For the sake of simplicity, R, will be neglected

and Xc will be presented by the first two terms of a Taylor

series

x,= xl +2 RCQ18. (1)

The constant part is denoted by Xl, and the slope of the

linearly growing part is denoted by 2QI. The frequency

detuning parameter 8 is defined as follows

(.O-OO
8=—.

@o
(2)

The input impedance measured by the network analyzer

is then

2,= jX, +

‘+’Q’’[;-:)” ‘3)
In the above, Q, is the unloaded Q factor of the resonator,

the main objective of the measurement

QO=&. (4)

III. FORMATION OF A LooP ON THE

COMPLEX PLANE

The second term on the right-hand side of (3) describes

an exact circle on the complex impedance plane, when the

frequency is varied. The addition of the linearly growing
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Fig. 1. (a) Complete equivalent circuit for the input impedance of an

inductance-coupled cavity. (b) Simplified equivalent circuit for the

vicinity of frequency @o. R. can be neglected and Xc is a slowly

varying reactance.

reactance Xe distorts the circle so that a loop is created on

the complex plane Z,. This will be demonstrated on a

simple example of an inductance-coupled cavity. If the

lowest resonant frequency O+ is considered, and if the

presence of the higher resonant frequencies is neglected,

the function X. becomes

X,=(.IJOL=(l+8) = X1(1+(3) (5)

so that 2RCQI = Xl. By taking a numerical example with

Xl= 2RC, RO = 1.5RC, and QO = 25, the normalized input

impedance is computed such as shown in Fig. 2. It is

important to observe that the formation of a loop has

similar effect, as if the Q-circle was shrunk, The apparently

reduced circle no longer touches the imaginary axis. This

fact may be wrongly interpreted as an indication that the

coupling losses were present (R ~ # O), The application of

the Ginzton’s procedure for incorporating the effect of the

coupling losses ([1], p. 424) would be a mistake in such a

situation.

If the Q factor of one of the higher resonances was to be

measured,. the presence of the other resonant frequencies

above and below the observed frequency would cause an

increased slope QI and the crossover point in Fig. 2 would

move even farther away from the imaginary axis.

In the entire range of measured frequencies 8<<1, so

that the following approximation is valid:

u
: = 28.———

w~
(6)

The input impedance becomes

RO
21= j(X1 +2 RcQ1r?)+

1 + j2QOt3 “
(7)

It is easy to measure the two crossover frequencies on

the impedance loop. Approximate computation can be

made by assuming that Q08 >>1, which leads to

rRo/Rc
8CO=+ —

4QOQ1 “
(8)

The above expression is useful for estimating the slope QI

from the measured data, as explained later in Section V.

jX
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Fig. 2. Normalized input impedance Z, for an inductance-coupled

cavity.

The input reflection coefficient, displayed on the net-

work analyzer, is

r’,=;;;’.
lc

(9)

The first term in (7) is slowly varying, and the second,

resonant part is a fast varying function of 8. It is then

convenient to introduce two functions, the slowly varying

z,

“$=R++J(2+2Q41

and the fast varying Z~

ZF= R.

1 + j2Q08 “

The input reflection coefficient then becomes

(lo)

(11)

(12)

If the coupling coefficient diminishes to zero, the input

impedance at frequency @o is given by the point Z~ on the

imaginary axis (see Fig. 2), The corresponding reflection

coefficient, for a decoupled resonator is

rD=–g. (13)
s

The difference I’i – 17~ takes a very simple form

r,–rD=
2RC

( )“

2-; +++

s F

(14)

The above expression is obtained without using any ap-

proximations. f~ simplification is possible due to the fact

that 8<<1 and QI << Qo. Denoting the normalized (con-
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Fig. 3. Input reflection coefficient as a function of frequency,

stant) reactance by

xl
J--. = —

RC
(15)

one can approximately express the term in parenthesis of

(14) as follows:

++*”i(*+%)(l+’2Q~8)‘1’)
In the above equation, the loaded detuning parameter is

defined as

and the loaded Q factor is defined as

&%_
QL=l+K

while the coupling coefficient K stands for

RO

‘= RC(l+X:)”

(17)

(18)

(19)

Ginzton’s definition of the coupling coefficient ~ is slightly

different from the above definition

/l=:= K(l+x;).
c

(20)

Equation (17) specifies the detuning due to coupling,
Namely, when the input impedance from Fig. 2 is mapped

onto a Smith chart, the loop still closely resembles a circle,

as shown in Fig. 3. However, the magnitude of the reflec-

tion coefficient r, k SIndkSt at the fU5qUeIICY ~L, which

differs from the actual resonant frequency tio of the un-

loaded resonator.

IV. MEASUREMENT OF QO VIA QL

By neglecting the 8 dependence in (10), the following

approximation is obtained for 2,2:

-% =w+xw2ta-lxl. (21)

Then, (14) becomes

2e-J2tm-’ xl

r,–rD=

()

(22)

1+: (1+ j2Q~8~)

The vector ri – r~ clearly describes a circle on a Smith

chart. In the vicinity of frequency WL, the circle is a good

approximation of the actual measured loop, but, when

QL8~ >>1, the approximation breaks down. Therefore, for

good accuracy, it is prudent to perform the measurement

within the portion of the loop where QL8L <1. At @= tiL,

the loaded detuning parameter 8L = O, and the magnitude

of the vector specified by (22) attains its maximum

2
lrl–rDlmm=d=—. (23)

1++

The value of d can be quite accurately measured on the

Smith chart (see Fig. 3). Then, the coupling coefficient is

computed from

d

‘=2–d”
(24)

It is to be noted that it was not necessary to assume x: <<1

in the above derivation. Even for moderate values of xl,

such as xl = 2, the relationship (24) is entirely valid,

The value of xl may be found from the Smith chart in

Fig. 3 as being equal to the normalized reactance corre-

sponding to the point r~. If the reference plane for the

impedance measurements is carefully established, the value

of xl may be reliable, but a very small shift in the reference

plane may considerably effect the value of xl. Fortunately,

xl is of secondary importance in the entire measurement,

since it does not appear in (24).
The measurement of Q~ follows immediately from (22).

As the frequency varies, the only variable in (22) is 6~. The

angle r#IL in Fig. 3 is then given by

tan@~ = – 2QL8~. (25)

At the center frequency (~= ~~), the angle $L is equal to

zero. If one selects two frequencies ~~ and ~q where

@L= *45 0, the loaded Q factor is found from (25), (17),

and (2) as

f(l f.
QL=f3–f4=f3–f4” (26)

If one wants to minimize possible error due to the fact

that the loop locus differs from the idealized circle, he may

select a smaller angle OL for measurement purposes. A

convenient choice may be the angle 26.560, which gives

tan @L= 0.5. For an arbitrary choice of @L, the correspond-

ing frequencies are denoted by fl and f2. The formula for

computation of QL is then

(27)

Knowing Q~ and ~, one can then compute QO from (18)

QO=QL(l+ ~), (28)
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Fig. 4. Template for the polar display of the network analyzer,

A transparent template is useful for reading the frequen-

cies ~1 to ~z on the polar display of the network analyzer,

The template is shown in Fig. 4. If one is so inclined, he

may engrave the scale for direct reading of I( as shown. The

template is then rotated over the polar display until its

center line coincides with r~, Afterwards, the swept

frequency operation is discontinued, and the accurate read-

ing of the intersection frequencies is performed in “ CW’

operation with the aid of the frequency counter. Alterna-

tively, if the frequency counter is not available, the network

analyzer may be operated in a narrow swept range ‘(A F”,

so that a circular arc is shown on the display, By adjusting

the arc to extend,to +45 0 points or to i 26,560 points, the

Q~ “value can be computed in the same way as above. The
frequency difference ~1 – f2 or f3 – f4 can be read with

sufficient accuracy directly from the “AF” scale on the

network analyzer.

V. EXAMPLE

To illustrate the procedure, consider the measurement of

an inductance-coupled dielectric resonator. The measured

input reflection coefficient in the swept frequency opera-

tion is shown in Fig. 5. The plot was made with an x – y

plotter attached to the output of the network analyzer,

whereas the contours of the Smith chart and the lines for

+45 0 and +300 were drawn later, with the help of

reference points.

The frequencies for +~ = ~450, measured with the mi-

crowave counter, were; f3 = 7.1730 GHz, f4 = 7.1439 GHz,

and fL = 7.1575 GHz. The measured diameter is d =1.45,

from which we complete the coupling K = 2.64. Thus, Q~

= 246 and QO = 895, Afterwards, the two frequencies at

OL = t300 were also measured. Their values were fl =

7.1660 GHz and f2 = 7.1491 GHz, so that the correspond-

ing Q~ = 244, in good agreement with the result obtained
from the ~450 lines.

From Fig. 5, it can be estimated that xl= 0.16, How-

ever, this value is not very reliable, because, in performing

the measurement, the reference position on the transmis-

sion line leading to the network analyzer was not estab-

lished with great care. With the use of (17), the resonant

frequency of the decoupled resonator is then estimated to

@
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45 30”
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Fig. 5. Measured reflection coefficient of the resonator with cou-

pling coefficient tt = 2.64

be ~0 = 7.1406 GHz. The crossover frequencies (end points

in the swept measurement) were measured with a frequency

counter to be ~j = 6.8575 GHz and fb = 7.3699 GHz.

Therefore, 28,0 ==0,0716, and from (8) and (19) we find the

slope parameter of the external circuit

(29)

which is here Q1 = 0.590.

VI. DIRECT MEASUREMENT OF Q.

Q, can also be measured directly as follows: from (25),

(23), and (18), one obtains

2 tan +~

‘0= (2-d)8L’

TO find 28~, which directly gives QO,

(30)

one should require

(31)

This equation describes a circle of radius @, passing

through points Td and – I’d.

Two such symmetrically positioned circles for direct

reading of Q. can also be incorporated in the template as

shown in Fig. 4. Again, it is to be noted that the above

derivation is valid for nonvanishing values of xl.

VII. CONCLUSION

The described measurement procedure consists of de-

termining the “diameter” of the near-circular loop on the

Smith chart and then measuring the frequency difference

of two convenient points on the “circle.” These points may

be located at +~ = ~450, ~300, ~ 26.650, or similar

angles. In contrast with conventional procedure, it is not
necessary to discriminate between the undercoupled and

the overcouplecl cases, because (24) covers both of them.

Another distinction of the described procedure is that the

frequency variation, of the external reactance is not ne-

glected, and an estimate of its slope QI is obtained from

the observation of the crossover point on the loop shown in

the polar display of the network~analyzer.
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A Nonlinear Analysis of the Effects of
Transient Electromagnetic Fields on

Excitable Membranes

PAOLO BERNARDI, SENIOR MEMBER IEEE, AND GUGLIELMO D’ INZEO, MEMBER, IEEE

Abstract —The transmembrane voltage produced by a transient electro-

magnetic field has been determined using a nonlinear model of the cellular

membrane. The influence on the membrane voltage of the various parame-

ters characterizing the incident field, such as wave-shape, time-width, and

amplitude, has been anafyzed. In particular, the amplitude of the incident

field for which the cell’s behavior can be assumed as linear and the

tbr,eshold level for exciting action potentials on the membrane have been

determined. Potential hazards for humans exposed to transient fields are

examined in light of this interaction mechanism.

I. INTRODUCTION

T HE EVALUATION of hazardous levels of nonioniz-

ing RF and microwave (MW) radiations requires a

deep knowledge of the interaction mechanisms between

electromagnetic (EM) fields and biological systems.
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The so-called thermal effect, produced by the energy

dissipated within the tissue, has been, until now, the most

examined one [1], [2]. Since the thermal effect is usually not

influenced too much by the temporal behavior of the

absorbed EM field, the major part of the literature on the

subject is devoted to interactions produced by harmonic

fields.

A nonthermal interaction mechanism, considered more

recently [3]–[6], consists of the displacement of the mem-

brane voltage from its resting value produced by the field

acting at the cellular membrane level. This mechanism is

strongly influenced by the temporal dependence of the

field absorbed within the tissue. Therefore, it is important

to analyze the effects produced on the membrane by EM

fields having a general temporal behavior.

Mac Gregor [3], studying a linear model of the interac-

tion process, has shown that a CW incident plane-wave

with a frequency of 100 MHz and amplitude 200 V/m

0018-9480/84/0700-0670$01.00 01984 IEEE


