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Q-Factor Measurement with Network
Analyzer

DARKO KAJFEZ, SENIOR MEMBER, IEEE, AND EUGENE J. HWAN, MEMBER IEEE

Abstract —Ginzton’s impedance method of Q-factor measurement is
adapted to network analyzer techniques. The circuit model of the resonator
incorporates also an external reactance which varies linearly with frequency
to take into account the effects of the coupling mechanism and the
influence of the distant resonant modes.

I. INTRODUCTION

HE RESONANT microwave circuits, such as micro-
strip transmission lines or dielectric resonators, ex-
hibit sharp resonances at distinct frequencies. In the vicin-
ity of each resonance, the behavior of the resonator may be
described by an equivalent lumped resonant circuit. The
three basic parameters of the equivalent resonant circuit
are: the unloaded resonant frequency f,, the unloaded Q
factor Q,, and the coupling factor .

The input impedance as a function of frequency of a
typical resonator describes a nearly perfect circle. Ginzton
[1] describes in detail the analysis of measured circles on
the Smith chart in order to deduce the values of Q, and «.
The procedure described by Ginzton was developed at the
time when impedances were measured with the use of
slotted lines. It was then appropriate to define the “de-
tuned short” and “detuned open” reference points on the
slotted line, and to interpret the data with respect to one or
the other of these two points. The implied assumption was
that the reactance X, of the external circuit can be ne-
glected.

Nowadays, the impedance is measured much faster with
the network analyzer [2]. The reference plane of such a
measurement coincides with the end of transmission line
leading to the resonator, while the “detuned short” or
“detuned open” points are difficult to locate and of no
advantage in interpreting the data. The procedure to be
described here uses the data directly, such as shown on the
polar display of the network analyzer. Furthermore, the
analysis which follows does not require that the reactance
of the external circuit be negligible.

In the measurement method to be described, the resona-
tor is located at the end of the transmission line which
leads to the network analyzer. A recent paper [3] has
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described an alternative method in which the resonator is
coupled to the doubly-terminated transmission line like a
bandstop filter. Each of these methods should find its use
in different circuit configurations.

II. CircuiT MODEL

The equivalent circuit for the input impedance Z, of an
inductance-coupled cavity is shown in Fig. 1(a). The circuit
is of the Foster type, consisting of an infinite number of
parallel resonant circuits, one for each resonant mode in
the cavity [4]. If the cavity was capacitance-coupled, the
inductance L, would have to be replaced by a capacitance.
The transmission line of the characteristic impedance R, (a
real number) to the left of the input terminals represents
the cable leading to the network analyzer.

The measurement is performed in the narrow range of
frequencies around the value w,, the resonant frequency
under observation. In this narrow range of frequencies, the
remainder of the circuit in Fig. 1(a) is replaced by an
equivalent “external” impedance R,+ jX, as shown in
Fig. 1(b). For the sake of simplicity, R, will be neglected
and X, will be presented by the first two terms of a Taylor

series
X,= X, +2R,0,8. (1)

The constant part is denoted by X, and the slope of the

linearly growing part is denoted by 2Q,. The frequency

detuning parameter 0 is defined as follows
P!

Wy

@)

The input impedance measured by the network analyzer
is then

R
Z,= jX, + . : (3)
1+ jg,[ £ - 20
J&o w, ©

In the above, Q, is the unloaded Q factor of the resonator,
the main objective of the measurement

_ R
QO—wOLO.

4)

III. FORMATION OF A LOOP ON THE

CoMPLEX PLANE

The second term on the right-hand side of (3) describes
an exact circle on the complex impedance plane, when the
frequency is varied. The addition of the linearly growing
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Fig. 1. (a) Complete equivalent circuit for the input impedance of an

inductance-coupled cavity. (b) Simplified equivalent circuit for the
vicinity of frequency w,. R, can be neglected and X, is a slowly
varying reactance.

reactance X, distorts the circle so that a loop is created on
the complex plane Z,. This will be demonstrated on a
simple example of an inductance-coupled cavity. If the
lowest resonant frequency w, is considered, and if the
presence of the higher resonant frequencies is neglected,
the function X, becomes

X,=wyL,(1+8)=X;(1+98) (5)

so that 2R _Q, = X;. By taking a numerical example with
X,=2R,, Ry=1.5R_, and @, =125, the normalized input
impedance is computed such as shown in Fig. 2. It is
important to observe that the formation of a loop has
similar effect, as if the Q-circle was shrunk. The apparently
reduced circle no longer touches the imaginary axis. This
fact may be wrongly interpreted as an indication that the
coupling losses were present (R, # 0). The application of
the Ginzton’s procedure for incorporating the effect of the
coupling losses ([1], p. 424) would be a mistake in such a
situation.

If the Q factor of one of the higher resonances was to be
measured, the presence of the other resonant frequencies
above and below the observed frequency would cause an
increased slope Q; and the crossover point in Fig, 2 would
move even farther away from the imaginary axis.

In the entire range of measured frequencies § <1, so
that the following approximation is valid:

L _Y .
et (6)
The input impedance becomes
} R
Z,=J(X1+2RCQ15)+ﬁj2£QO—5- (7

It is easy to measure the two crossover frequencies on
the impedance loop. Approximate computation can be
made by assuming that Q6 > 1, which leads to

_ [RJR.
%0 =%\ 2g,0:

The above expression is useful for estimating the slope Q;
from the measured data, as explained later in Section V.

(8)
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Fig. 2. Normalized input impedance Z, for an inductance-coupled

cavity.
The input reflection coefficient, displayed on the net-
work analyzer, is
T = Zl - Rc
o Z,+ R,

(9)

The first term in (7) is slowly varying, and the second,
resonant part is a fast varying function of 4. It is then
convenient to introduce two functions, the slowly varying
V4

s

X
Z,=R, 1+J'(1T1 +2Q18)] (10)
and the fast varying Z,
Ry
TR g .
The input reflection coefficient then becomes
ZF — Zs*
L=-Z77" (12)

If the coupling coefficient diminishes to zero, the input
impedance at frequency w, is given by the point Z, on the
imaginary axis (see Fig. 2). The corresponding reflection
coefficient, for a decoupled resonator is

zx
FD = - Zs . (]3)
The difference T, — T, takes a very simple form
2R
[[-Tp=——"7-""—. (14)

1 1
2\ — 4 —
ZS( Z " ZF)
The above expression is obtained without using any ap-

proximations. A simplification is possible due to the fact
that 8 <1 and Q; < Q,. Denoting the normalized (con-
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Fig. 3. Input reflection coefficient as a function of frequency.

stant) reactance by
TR (15)

one can approximately express the term in parenthesis of
(14) as follows:

1
1.1

Z," Z; R,

1
1+ x}

(1+j20,8,). (16)

+ R
RO

In the above equation, the loaded detuning parameter is
defined as

W= w XK
8, = L=s- = 17
L w, 2QO ( )
and the loaded Q factor is defined as
_ 9
while the coupling coefficient « stands for
R,

K= —— 19
R (1+ xlz) (19)

Ginzton’s definition of the coupling coefficient 8 is slightly
different from the above definition

B=%—O=K(1+x12). (20)

Equation (17) specifies the detuning due to coupling.
Namely, when the input impedance from Fig. 2 is mapped
onto a Smith chart, the loop still closely resembles a circle,
as shown in Fig. 3. However, the magnitude of the reflec-
tion coefficient I, is smallest at the frequency w,, which
differs from the actual resonant frequency w, of the un-
loaded resonator.

IV. MEASUREMENT OF Q, VIA @,

By neglecting the 8 dependence in (10), the following
approximation is obtained for Z2:

Z2=RY(1+ x})e/?™ ' x,

(21)

Then, (14) becomes

ze—j2tan_1xl

(145 )+ 20.8,)

The vector I, — ', clearly describes a circle on a Smith
chart. In the vicinity of frequency w,, the circle is a good
approximation of the actual measured loop, but, when
Q;68; >1, the approximation breaks down. Therefore, for
good accuracy, it is prudent to perform the measurement
within the portion of the loop where Q,6, <1. At w = w,,
the loaded detuning parameter §, =0, and the magnitude

of the vector specified by (22) attains its maximum

2
IFI_I‘DImaxzd=_—1-'
1+—
K

l

(22)

(23)

The value of d can be quite accurately measured on the
Smith chart (see Fig. 3). Then, the coupling coefficient is
computed from

K= m .
It is to be noted that it was not necessary to assume x;{ <1
in the above derivation. Even for moderate values of x,
such as x; = 2, the relationship (24) is entirely valid.

The value of x; may be found from the Smith chart in
Fig. 3 as being equal to the normalized reactance corre-
sponding to the point I',. If the reference plane for the
impedance measurements is carefully established, the value
of x; may be reliable, but a very small shift in the reference
plane may considerably effect the value of x;. Fortunately,
x, is of secondary importance in the entire measurement,
since it does not appear in (24).

The measurement of Q; follows immediately from (22).
As the frequency varies, the only variable in (22) is §,. The
angle ¢, in Fig. 3 is then given by

tang; = —20,95;. (25)

At the center frequency (f = f,), the angle ¢; is equal to
zero. If one selects two frequencies f; and f, where
¢; = £45°, the loaded @ factor is found from (25), (17),
and (2) as

(24)

_h &
L~f f—f
If one wants to minimize possible error due to the fact

that the loop locus differs from the idealized circle, he may

select a smaller angle ¢; for measurement purposes. A

convenient choice may be the angle 26.56°, which gives

tan¢, = 0.5. For an arbitrary choice of ¢, , the correspond-
ing frequencies are denoted by f; and f,. The formula for
computation of Q, is then

Q (26)

f
QL = fl _sz tan¢L' (27)
Knowing Q, and k, one can then compute Q, from (18)
Qo=0.(1+x). (28)
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Fig. 4. Template for the polar display of the network analyzer.

A transparent template is useful for reading the frequen-
cies f, to f, on the polar display of the network analyzer.
The template is shown in Fig. 4. If one is so inclined, he
may engrave the scale for direct reading of x as shown. The
template is then rotated over the polar display until its
center line coincides with T',. Afterwards, the swept
frequency operation is discontinued, and the accurate read-
ing of the intersection frequencies is performed in “CW”
operation with the aid of the frequency counter. Alterna-
tively, if the frequency counter is not available, the network
analyzer may be operated in a narrow swept range “AF ",
so that a circular arc is shown on the display. By adjusting
the arc to extend to +45° points or to+26.56° points, the
Q, value can be computed in the same way as above. The
frequency difference f, — f, or f;— f, can be read with
sufficient accuracy directly from the “AF” scale on the
network analyzer.

V. ExAMPLE

To illustrate the procedure, consider the measurement of
an inductance-coupled dielectric resonator. The measured
input reflection coefficient in the swept frequency opera-
tion is shown in Fig. 5. The plot was made with an x-y
plotter attached to the output of the network analyzer,
whereas the contours of the Smith chart and the lines for
+45° and +30° were drawn later, with the help of
reference points.

The frequencies for ¢; = +45°, measured with the mi-
crowave counter, were; f; = 7.1730 GHz, f, = 7.1439 GHz,
and f; =7.1575 GHz. The measured diameter is d =1.45,
from which we complete the coupling « = 2.64. Thus, Q;
=246 and Q,=895. Afterwards, the two frequencies at
¢, =130° were also measured. Their values were f; =
7.1660 GHz and £, = 7.1491 GHz, so that the correspond-
ing Q, = 244, in good agreement with the result obtained
from the +45° lines.

From Fig. 5, it can be estimated that x; = 0.16. How-
ever, this value is not very reliable, because, in performing
the measurement, the reference position on the transmis-
sion line leading to the network analyzer was not estab-
lished with great care. With the use of (17), the resonant
frequency of the decoupled resonator is then estimated to
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Fig. 5. Measured reflection coefficient of the resonator with cou-
pling coefficient k = 2.64

be f, = 7.1406 GHz. The crossover frequencies (end points
in the swept measurement) were measured with a frequency
counter to be f;=6.8575 GHz and f,=7.3699 GHz.
Therefore, 28, == 0.0716, and from (8) and (19) we find the
slope parameter of the external circuit

_ x(l -+ xlz)
QO(ZSCO)2
which is here Q, = 0.590.

10 (29)

VI. DIRECT MEASUREMENT OF Q,

Q, can also be measured directly as follows: from (25),
(23), and (18), one obtains

2tan¢
Qo= ZZ——-E)—;L ~ (30)
To find 2§,, which directly gives Q,, one should require
tang, =1— (_21 (31)

This equation describes a circle of radius y2, passing
through points I, and —T,.

Two such symmetrically positioned circles for direct
reading of Q, can also be incorporated in the template as
shown in Fig. 4. Again, it is to be noted that the above
derivation is valid for nonvanishing values of x;.

VIL

The described measurement procedure consists of de-
termining the “diameter” of the near-circular loop on the
Smith chart and then measuring the frequency difference
of two convenient points on the “circle.” These points may
be located at ¢, = +45°, +30°, +26.65°, or similar
angles. In contrast with conventional procedure, it is not
necessary to discriminate between the undercoupled and
the overcoupled cases, because (24) covers both of them.
Another distinction of the described procedure is that the
frequency variation of the external reactance is not ne-
glected, and an estimate of its slope Q; is obtained from
the observation of the crossover point on the loop shown in
the polar display of the network-analyzer.

CONCLUSION
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A Nonlinear Analysis of the Effects of
Transient Electromagnetic Fields on
Excitable Membranes

PAOLO BERNARDI, SENIOR MEMBER IEEE, AND GUGLIELMO D’ INZEQO, MEMBER, IEEE

Abstract —The transmembrane voltage produced by a transient electro-
magnetic field has been determined using a nonlinear mode] of the cellular
membrane. The influence on the membrane voltage of the various parame-
ters characterizing the incident field, such as wave-shape, time-width, and
amplitude, has been analyzed. In particular, the amplitude of the incident
field for which the cell’s behavior can be assumed as linear and the
threshold level for exciting action potentials on the membrane have been
determined. Potential hazards for humans exposed to fransient fields are
examined in light of this interaction mechanism.

I. INTRODUCTION

HE EVALUATION of hazardous levels of nonioniz-

~ing RF and microwave (MW) radiations requires a

deep knowledge of the interaction mechanisms between
electromagnetic (EM) fields and biological systems.
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The so-called thermal effect, produced by the energy
dissipated within the tissue, has been, until now, the most
examined one [1], [2]. Since the thermal effect is usually not
influenced too much by the temporal behavior of the
absorbed EM field, the major part of the literature on the
subject is devoted to interactions produced by harmonic
fields.

A nonthermal interaction mechanism, considered more
recently [3]-[6], consists of the displacement of the mem-
brane voltage from its resting value produced by the field
acting at the cellular membrane level. This mechanism- is
strongly influenced by the temporal dependence of the
field absorbed within the tissue. Therefore, it is important
to analyze the effects produced on the membrane by EM
fields having a general temporal behavior.

Mac Gregor [3), studying a linear model of the interac-
tion process, has shown that a CW incident plane-wave
with a frequency of 100 MHz and amplitude 200 V/m
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